If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=9=41
We move all terms to the left:
2x^2-(9)=0
a = 2; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·2·(-9)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*2}=\frac{0-6\sqrt{2}}{4} =-\frac{6\sqrt{2}}{4} =-\frac{3\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*2}=\frac{0+6\sqrt{2}}{4} =\frac{6\sqrt{2}}{4} =\frac{3\sqrt{2}}{2} $
| 43=-x | | 2x/(0.80-x)(0.20-x)=0.001 | | F(x)=x2+1 | | 1/5x-5=18 | | 31=4r-5 | | y/5+8=8 | | 2(x+3)-6=-X+8 | | 3/4×x=-9 | | 2(15(4)+b(4)+15(b))=270 | | 9(c-7)=9+8c | | -26=-8y+3(y+8) | | X=(5x+4) | | n+21=8,064 | | (0.80-x)(0.20-x)=1 | | 43=-x/3 | | ((6x=4)/5)+((7x+5)/4)=5 | | 6(u-5)+3u=24 | | X=(7x-1)(6x-1) | | 5(16^18)=4^x | | 6+2p=6(1-7p) | | 3x-(×+2)=4 | | -9x+1=3(x-15)-2 | | 2n-8=15 | | 72=4v+8 | | 2(60+b4+15b)=270 | | y/2=8=6 | | 8(w+5)-6w=36 | | X=(7x-1) | | 5(1/5(a+10)=5(-3) | | 77-(7x+3)=7(x+2)+x | | 2x2+5=41 | | 7x=30−8x |